HomeCALCULUSAperiodic monotiles exist! -...

Aperiodic monotiles exist! – Math For Love

Some delightful news from the world of pure mathematics yesterday: a team of four mathematician (Smith, Myers, Kaplan, Goodman-Strauss) released a preprint on the Arxiv with a proof that aperiodic monotiles, or “einsteins,” exist. Their representative example is the “hat polykite,” which can be built from eight kite shapes. In fact, I was able to build one this morning using my 21st Century Pattern Blocks!Aperiodic monotiles exist! – Math For Love

To be clear, the shape in question is the entirely of what’s above, not the individual kites. And what makes it special isn’t that it tiles the plane by itself—lots of shapes do that, including a single kite (or any triangle). What’s special about it is that none of these tilings of the plane are periodic, meaning that none of them repeat in any fundamental way.

If you’d like to play around with this tiling now, try out the Polypad plugin below, or click here to explore in its own tab.

If you’ve noticed some of us math educator/communicator types swooning over this result on social media, there’s a reason. First off, the statement of the problem—do these tiles that, by themselves, tile the plane without admitting repetitions—is relatively easy to understand. And the tile itself is a pretty simple polygon! When you consider that the earliest example of an aperiodic tiling required 20426 different tiles, this is a triumph of simplicity over complexity! There’s something fundamentally beautiful about that.

But understanding why the result is true is another matter. This was an open question for decades, and it was unsolved because it was hard! Folks have probably constructed or sketched these einsteins many times. They’re hiding in plain sight! But how do you know you have one when you have one? That is the heart of the difficulty.

You can play around with these monotiles on polypad,

This whole thing reminds me of a more accessible mathematical tiling demonstration I witnessed on twitter last week, when Libo Valencia tweeted out a problem he and his daughter were exploring: how can one build a regular hexagon using the same number of each of a collection of different shapes?

The question inspired Hana Murray to explore the question with 21st Century Pattern Blocks. She posted solutions for 3, 4, 6, and 8.

At this point, I jumped in with a question: what numbers can this problem be solved for? After 3, will odd numbers ever be possible again? Shyam Drury (@MathsXfer) suggested that since all the examples so far had been multiples of 2 or 3, maybe 9 would prove possible.

This is how new problems emerge in mathematics. We play around, and suddenly we have a question. And if we have a hunch about that question, maybe we have a conjecture. Now our play becomes more focused.

Sure enough, Hana came back with extensive new progress, building hexagons with 5, 9, 15, 36, and 81 of each type of shape.

To be clear, this question is nowhere near the importance or difficulty of the discovery of the einstein that has math twitter celebrating today. However, it’s worth noting that even in our fun little accessible tiling question, some of the same techniques show up. Hana’s key insight is to build intermediate shapes. Building medium sized rhombuses that use 3 of each shape type give her a single building block (the rhombus) that can construct the larger regular hexagons. If she can use an odd number of the rhombuses, she uses an odd number of each of the component blocks too!

The authors of the einstein paper pull the similar trick, though in much more complex ways (and often with the assistance of a computer). They call their intermediate shapes metatiles.

Interestingly, the substitution rules do not apply to the hats directly. Instead, we derive new metatiles from the clusters, and build a substitution system based on the metatiles. The underlying hats are simply brought along for the
ride.

Here is the deep pleasure of mathematics: a child can pick up blocks and build shapes from them, and experts can tackle problems including the same shapes for decades or centuries, until their resolution is cause for celebration!

And to those of us in between… we can explore our own problems, inspired by the playful genius of the professional mathematicians, and animated by the same instinct for playful exploration as the child. Mathematics is an infinite territory, and it has space for us all.

 

Most Popular

More from Author

Google Forms for Formative Assessment in Math Class

Cheers to a new school year that will be unlike any...

2nd Grade Subtraction Worksheet | Subtraction of 2-Digit Numbers

In 2nd grade subtraction worksheet we will solve the problems on subtraction...

S01 overview – Intellectual Mathematics

Galileo is the most overrated figure in the history of science....

Digital SAT Math Problems and Solutions (Part

Problem 1 :Store A sells raspberries for $5.50 per pint and...

- A word from our sponsors -

Read Now

Google Forms for Formative Assessment in Math Class

Cheers to a new school year that will be unlike any school year before!I know that all of us are looking at new and different plans...hybrid/synchronous/asynchronous/ fully in person/fully remote...the list goes on.   I have spent a considerable amount of time trying to figure out how I...

2nd Grade Subtraction Worksheet | Subtraction of 2-Digit Numbers

In 2nd grade subtraction worksheet we will solve the problems on subtraction of 2-digit numbers (without Regrouping), subtraction of numbers with regrouping, subtracting 1-digit number from 2-digit number with regrouping, subtracting 2-digit number with regrouping, checking subtraction with addition, subtraction is reverse of addition, addition and subtraction together, estimating the difference and...

S01 overview – Intellectual Mathematics

Galileo is the most overrated figure in the history of science. That is the thesis of Season 1 of my podcast, which consists of the following 18 episodes. Galileo bad, Archimedes good Galileo’s bumbling attempts at determining the area of the cycloid suggests a radical new interpretation of...

Digital SAT Math Problems and Solutions (Part

Problem 1 :Store A sells raspberries for $5.50 per pint and blackberries for $3.00 per pint. Store B sells raspberries for $6.50 per pint and blackberries for $8.00 per pint. A certain purchase of raspberries and blackberries would cost $37.00 at store A or $66.00 at store B. How many...

How To Find The Factors Of 20: A Simple Way

The factors of 20 are the numbers 1, 2, 4, 5, 10, 20, -1, -2, -4, -5, -10, and -20. As you can see, the total number of factors 20 has is 12. Make the following observations!The numbers 1, 2, 4, 5, 10, 20 are called positive factors of...

Addition & Subtraction Together |Combination of addition & subtraction

We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and ‘-‘ signs. We find the sum of the numbers with ‘+’ sign and similarly the sum of all the...

Two Back to School Ideas for Digital Classrooms

 Yep, it's a school year like no other.  If you're like me, you have some very specific back to school routines...you buy the new school supplies, you get your kids a new backpack, you prepare your bulletin boards.  There are even back to school activities that I...

Digital SAT Math Problems and Solutions (Part

Problem 1 :Each face of a fair 14-sided die is labeled with a number from 1 through 14, with a different number appearing on each face. If the die is rolled one time, what is the probability of rolling a 2? Solution : https://www.youtube.com/watch?v=PC0RAjG6Zb8 Problem 2 :A printer produces posters...

Percent of Increase Word Problems

Hello and welcome! We're focusing today on a fascinating mathematical topic: percent of increase word problems. We've got some exciting scenarios to consider and we'll walk through these calculations together. It'll be as simple as counting 1, 2, 3. Let's start! Before we start, let's be clear on...

Societal role of geometry in early civilisations – Intellectual Mathematics

Podcast: DownloadIn ancient Mesopotamia and Egypt, mathematics meant law and order. Specialised mathematical technocrats were deployed to settle conflicts regarding taxes, trade contracts, and inheritance. Mathematics enabled states to develop civil branches of government instead of relying on force and violence. Mathematics enabled complex economies in which...

Sub Plans for High School Math Class – Webquests are Perfect!

Distance learning ... hybrid learning ... asynchronous learning ...   we're all learning different terms right now!  Here is a type of activity would be great in any of these settings...Webquests!I have used these types of activities in my classroom for a number of years.  I enjoy using...

Digital SAT Math Problems and Solutions (Part

Problem 1 :A neighborhood consists of a 2-hectare park and a 35-hectare residential area. The total number of trees in the neighborhood is 3,934. The equation 2x + 35y = 3,934 represents this situation. Which of the following is the best interpretation of x in this context? A) ...