HomeTRIGNOMETRYPhilip Henslowe’s Card Trick...

Philip Henslowe’s Card Trick | The Aperiodical

In a dimly-lit tavern on the South Bank of the Thames, Philip Henslowe — builder and owner of the Rose Theatre — is celebrating the success of Shakespeare’s latest blockbuster, Henry VI Part I, among the cutthroats, actors and other lowlife of London. He spreads thirteen playing cards on a table in a circle. “Pick a card,” he grins. “Any card.”

Henslowe, one of Elizabethan theatre’s most important figures, kept a diary. It’s mainly the accounts of the theatre and records of loans, but among the administrivia are some gems — including the following card trick:

Philip Henslowe’s Card Trick | The Aperiodical
Dulwich College Archive MS VII f18v — with kind permission of the Governors of Dulwich College

My dogged team of researchers is looking into it, but there are very few documented card tricks from this era — and most of them are sleight-of-hand or forces. Tiago says this might be related to something written by Pacioli in 1478, and I understand there are Italian deck-stacking tricks from the first half of the 16th century. While it’s relatively unremarkable now, it seems quite sophisticated for its time.

Luckily, the trick was transcribed by W. W. Greg barely 300 years after having been scrawled out by Henslowe:

Screenshot of a PDF of the transcription. Text reads: "A watche at cardes to tell a man at what ower he thincketh to Risse proved trewe"; then a horizontal line; then "tacke xij cardes [w^th (and)] the knaue of clubes & laye them Round licke a clocke turnynge them all ther faces downward but the knave of clubes & laye hime vnder neth licke you^r watche & laye them this- then aske the ptie at what ower he will Risse & leat him kepe yt to hime seallfe & yf he thincke vij then poynte hime a a card to teall frome & bead hime yf he thincke vij to teall the card viij observinge this Rewle frome your leafte hand a cownt; that j for xv always & when you will have the ptie ^tell a poynt hime to tell toward you^r Right hand to what card you will a poynte hime you muste tell to your sealfe as before toward you leafte hand be ginynge at the j wch is xv & so tell them vpward as thus 15 16 17 18 19 20 21 22 23 24 & w^ch of al thes nvmbers that you poynte vpon bead him tell frome that w^ch he thinketh in his mind tel he haue towld to so maney toward his Right hand & then leat hime turn yt vp & yt shalbe that w^ch he thincketh a proved." To the right is a diagram of the numbers 1-12 arranged in a circle, with an X in place of 10.

Now, I don’t know about you, but I’m not fluent in shorthand-infused streams-of-consciousness written in Early Modern English. Maths communication has evidently come a long way in the last 400 years. Here’s the best I can do as a more-or-less faithful translation:

Take 12 cards and the jack of clubs and lay them in a circle like a clock, all face down except for the jack. Put the jack at the bottom like on your watch [ed: I have never owned a watch with the jack of clubs at the bottom of it, but let’s roll with it], laid out like [the picture]. Then ask the volunteer what time they will get up and to keep it to themself.

Tell them to pick a card to count from [ed: It’s unclear to me whether the trickster or the volunteer picks the card — it doesn’t make a difference, so I’d let the volunteer do it]. Starting from this card and moving clockwise, they should count from their card up to 15 — so if they picked 7, they should count on eight cards.

Going around the circle, you count aloud clockwise while pointing at the cards, saying “15” on the first card clockwise from the jack, “16” on the second and so on up to 26. Tell the volunteer that whichever number you said when you pointed at their current card, they should count anticlockwise from their secret number up to that number.

When they flip the card they land on, it will be the number they first thought of.

I presume “a proved” is Early Middle English for “and everyone said WOW! That’s amazing.”

But it doesn’t work.

If you follow the instructions — which, like a game of Telephone that started centuries before the telephone was invented, have been written down from Henslowe’s memory, transcribed by an expert from unclear manuscript, and then translated into modern-day English by someone unqualified to do so. Hi! — you’ll find your “tada!” falls flat, because it’s not their secret number.

Let’s try it: I get up when I want, except on Wednesdays when I’m rudely awakened by the dustmen at 6am. And, rolling a 13-sided die¹ to decide where to start, I get card #3. I need to count on 9 clockwise from there (to make it up to 15), so I end up on card #12. That’s been given the number 26, so I need to count counterclockwise from my number (6) up to 26 — that is, 20 cards backwards. That takes me to 5.

¹ Yes, I do own a 13-sided die. Why do you ask?

Close, but no not-yet-introduced-to-England cigar.

It turns out that, whatever card you start from, and whichever number you pick, you’ll end up on the card immediately before your secret number. This suggests an easy fix: start your counting-aloud from 14 at card #1.

In case you want to do the trick yourself correctly, here are instructions for my version:

  • Tell your volunteer to think of a secret number from 1 to 12 (don’t let me control your mind!).
  • Tell them to pick a card (any card! don’t tell me what it is) and count clockwise from their chosen card, starting from their secret number and ending at 15. Have them tell you the card they land on.
  • Now tell them the numbers attached to the card: whatever “time” their card is on the clock face, give them a number 13 higher.
  • They must now move anticlockwise from their chosen card, starting from their secret number, ending on the number attached to the card.
  • Turn over the card they ended up on and say “abracadabra!”.

My glamorous assistant Bill goes through the trick with me. Better magicians than me — which is pretty much everyone — will have ideas about improving the patter and performance.

NOW it works. But why?

You know what else, apart from the later Shakespeare plays, telephones, and cigars, hadn’t arrived in Elizabethan London? I’ll tell you: modular arithmetic. At least, modular arithmetic as we know it — working with remainders goes back to at least Sun Zi in the third century CE, but Euler and Gauss’s formalisations of it were still 150 years away.

I don’t know what Henslowe’s mathematical background was — he was certainly competent at regular arithmetic — so I don’t know whether he understood why the trick worked, whether he came up with it himself, or anything about the history of it. All the same, I’m certain he wouldn’t have used the modulo function.

(In case you’re one of today’s lucky 10,000: modular arithmetic uses the remainder left over when you divide by a given number, like on a clock: 16:00 is the same as 4pm, and we’d say we were working “modulo 12” or “mod 12”, because we are lazy and modulo is far too long a word. The numbers 4 and 16 have the same remainder when you divide them by 12. In this problem, we’ll be working modulo 13.)

Let’s say you’ve picked secret number \(s\) and you decide to start from card #\(c\). You’re going to count on \( 15-s \) cards from there, so you end up at card #\( (c + 15 – s ) \). (We can think of card 14 as the same as card 1 and so on.)

The number I assign to it is 13 more than the card number. Modulo 13, that’s just the card number — but doing it this way ensures we don’t have to deal with negative numbers. (Negative numbers had probably reached England by this point, but I don’t imagine they were the kind of thing you’d want to have in a card trick.)

In any case, the volunteer is currently at card #\( (c +15 – s ) \) and has been given the target # \( (c +28 – s )\) to count to, starting at their secret number \( s \). That means they’re going to move \( (c +28 – 2s) \) cards back the way they came, starting at card #\( (c + 15 -s ) \). Moving backwards makes it a subtraction, so we work out \( (c + 15 – s ) – (c +28 – 2s ) \) to see that we end up on card #\( (s – 13)\).

And, because there are 13 cards, that’s the same as card #\(s\), which has the volunteer’s secret number written on it.

Boom.

One more twist, though

When I talked to young Bill about it, he asked a tremendous mathematical question: “would it work with a number other than 15?” The kid is ten years old, and already making me mutter “good GRIEF, where did that come from?” about three times a month.

The answer is… you don’t need it to be 15. In fact, the first half of the trick is mathematically irrelevant². You could ask them to spell out their secret number in a language of their choice, you could ask them to add their age to their best Parkrun time in minutes, you could ask them to spin a coin and pick the card it lands closest to. It doesn’t matter in the slightest, as long as they pick a card.

² That doesn’t mean it’s not an important part of the trick! I think it’s helpful to demonstrate how you want the final bit counted, and it misdirects the volunteer/audience into thinking there must be something clever going on.

If that’s card #\( C \), then they subtract \( (C + 13) – s \) from it — which again leaves you on card #\( (s – 13) \), which is card #\( s \).


Even knowing the maths behind it, I think this is still a pretty impressive trick. To someone frequenting a smoky Elizabethan tavern, it must have looked like, well, magic.

Thanks to Rob Eastaway for sending me the trick. His book on the maths of Shakespeare, Much Ado About Numbers, is available wherever good books etc. Thanks also to Paul O’Malley and Tiago Hirth for historical help, and to Calista Lucy and the Governors of Dulwich College for permission to reproduce the manuscript page.

Most Popular

More from Author

Google Forms for Formative Assessment in Math Class

Cheers to a new school year that will be unlike any...

2nd Grade Subtraction Worksheet | Subtraction of 2-Digit Numbers

In 2nd grade subtraction worksheet we will solve the problems on subtraction...

S01 overview – Intellectual Mathematics

Galileo is the most overrated figure in the history of science....

Digital SAT Math Problems and Solutions (Part

Problem 1 :Store A sells raspberries for $5.50 per pint and...

- A word from our sponsors -

Read Now

Google Forms for Formative Assessment in Math Class

Cheers to a new school year that will be unlike any school year before!I know that all of us are looking at new and different plans...hybrid/synchronous/asynchronous/ fully in person/fully remote...the list goes on.   I have spent a considerable amount of time trying to figure out how I...

2nd Grade Subtraction Worksheet | Subtraction of 2-Digit Numbers

In 2nd grade subtraction worksheet we will solve the problems on subtraction of 2-digit numbers (without Regrouping), subtraction of numbers with regrouping, subtracting 1-digit number from 2-digit number with regrouping, subtracting 2-digit number with regrouping, checking subtraction with addition, subtraction is reverse of addition, addition and subtraction together, estimating the difference and...

S01 overview – Intellectual Mathematics

Galileo is the most overrated figure in the history of science. That is the thesis of Season 1 of my podcast, which consists of the following 18 episodes. Galileo bad, Archimedes good Galileo’s bumbling attempts at determining the area of the cycloid suggests a radical new interpretation of...

Digital SAT Math Problems and Solutions (Part

Problem 1 :Store A sells raspberries for $5.50 per pint and blackberries for $3.00 per pint. Store B sells raspberries for $6.50 per pint and blackberries for $8.00 per pint. A certain purchase of raspberries and blackberries would cost $37.00 at store A or $66.00 at store B. How many...

How To Find The Factors Of 20: A Simple Way

The factors of 20 are the numbers 1, 2, 4, 5, 10, 20, -1, -2, -4, -5, -10, and -20. As you can see, the total number of factors 20 has is 12. Make the following observations!The numbers 1, 2, 4, 5, 10, 20 are called positive factors of...

Addition & Subtraction Together |Combination of addition & subtraction

We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and ‘-‘ signs. We find the sum of the numbers with ‘+’ sign and similarly the sum of all the...

Two Back to School Ideas for Digital Classrooms

 Yep, it's a school year like no other.  If you're like me, you have some very specific back to school routines...you buy the new school supplies, you get your kids a new backpack, you prepare your bulletin boards.  There are even back to school activities that I...

Digital SAT Math Problems and Solutions (Part

Problem 1 :Each face of a fair 14-sided die is labeled with a number from 1 through 14, with a different number appearing on each face. If the die is rolled one time, what is the probability of rolling a 2? Solution : https://www.youtube.com/watch?v=PC0RAjG6Zb8 Problem 2 :A printer produces posters...

Percent of Increase Word Problems

Hello and welcome! We're focusing today on a fascinating mathematical topic: percent of increase word problems. We've got some exciting scenarios to consider and we'll walk through these calculations together. It'll be as simple as counting 1, 2, 3. Let's start! Before we start, let's be clear on...

Societal role of geometry in early civilisations – Intellectual Mathematics

Podcast: DownloadIn ancient Mesopotamia and Egypt, mathematics meant law and order. Specialised mathematical technocrats were deployed to settle conflicts regarding taxes, trade contracts, and inheritance. Mathematics enabled states to develop civil branches of government instead of relying on force and violence. Mathematics enabled complex economies in which...

Sub Plans for High School Math Class – Webquests are Perfect!

Distance learning ... hybrid learning ... asynchronous learning ...   we're all learning different terms right now!  Here is a type of activity would be great in any of these settings...Webquests!I have used these types of activities in my classroom for a number of years.  I enjoy using...

Digital SAT Math Problems and Solutions (Part

Problem 1 :A neighborhood consists of a 2-hectare park and a 35-hectare residential area. The total number of trees in the neighborhood is 3,934. The equation 2x + 35y = 3,934 represents this situation. Which of the following is the best interpretation of x in this context? A) ...